منابع مشابه
Tunneling Plasmonics in Bilayer Graphene.
We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latte...
متن کاملTowards Infrared Plasmonics in Graphene
Graphene plasmons have recently been proposed as an alternative to noble-metal plasmons in the field of photonics, due to its extremely tight light confinement, relatively long-lived collective oscillation, and high tunability via electrostatic gating. Successful support and tuning of graphene plasmonic modes rely on controllable doping of graphene to high carrier densities in nanometer-scale s...
متن کاملFundamental Limits to Cellular Sensing
In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at ...
متن کاملPlasmonics in graphene at infrared frequencies
We point out that plasmons in doped graphene simultaneously enable low losses and significant wave localization for frequencies below that of the optical phonon branch Oph 0.2 eV. Large plasmon losses occur in the interband regime via excitation of electron-hole pairs , which can be pushed toward higher frequencies for higher-doping values. For sufficiently large dopings, there is a bandwidth o...
متن کاملGraphene plasmonics for tunable terahertz metamaterials.
Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2018
ISSN: 0028-0836,1476-4687
DOI: 10.1038/s41586-018-0136-9